Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Environmental Geotechnics ; 8(3):208-216, 2020.
Article in English | Scopus | ID: covidwho-1259279

ABSTRACT

The huge number of fatalities due to the coronavirus disease 2019 pandemic has imposed an unprecedented pressure on existing burial facilities. Thus, mass burial is being used in different parts of the world to cope with this unusual situation. As a dead body might be contagious for at least hours, if not days, there is a need to manage/design/construct the mass burial considering the safe handling of coffins and other environmental, social, economical and ethical/dignity aspects. However, the guidelines of the World Health Organization do not thoroughly address the potential risk associated with groundwater pollution due to mass burial construction. Hence, the present study discusses the potential risk of groundwater pollution in mass burial sites and sheds light on the factors that control the survival/retention of bacteria and viruses in porous media. Furthermore, using the available knowledge on designing/monitoring of municipal/industrial waste disposal sites, a cost-effective and simple construction method of mass burial is proposed to mitigate its potential environmental impact. © 2021 ICE Publishing: All rights reserved.

2.
Environmental Geotechnics ; 8(3):193-207, 2020.
Article in English | Scopus | ID: covidwho-1259278

ABSTRACT

The coronavirus disease 2019 pandemic has posed severe threats to humans and the geoenvironment. The findings of severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) traces in waste water and the practice of disinfecting outdoor spaces in several cities in the world, which can result into the entry of disinfectants and their by-products into storm drainage systems and their subsequent discharge into rivers and coastal waters, raise the issue of environmental, ecological and public health effects. The aims of the current paper are to investigate the potential of water and waste water to operate as transmission routes for Sars-CoV-2 and the risks of this to public health and the geoenvironment. Additionally, several developing countries are characterised by low water-related disaster resilience and low household water security, with measures for protection of water resources and technologies for clean water and sanitation being substandard or not in place. To mitigate the impact of the pandemic in such cases, practical recommendations are provided herein. The paper calls for the enhancement of research into the migration mechanisms of viruses in various media, as well as in the formation of trihalomethanes and other disinfectant by-products in the geoenvironment, in order to develop robust solutions to combat the effects of the current and future pandemics. © 2021 ICE Publishing: All rights reserved.

3.
Environmental Geotechnics ; 8(3):172-192, 2020.
Article in English | Scopus | ID: covidwho-1259277

ABSTRACT

The outbreak of the coronavirus disease 2019 (Covid-19) pandemic not only has created a health crisis across the world but is also expected to impact negatively the global economy and societies at a scale that is maybe larger than that of the 2008 financial crisis. Simultaneously, it has inevitably exerted many negative consequences on the geoenvironment on which human beings depend. The current paper articulates the role of environmental geotechnics in elucidating and mitigating the effects of the current pandemic. It is the belief of all authors that the Covid-19 pandemic presents not only significant challenges but also opportunities for the development of the environmental geotechnics field. This discipline should make full use of geoenvironmental researchers' and engineers' professional skills and expertise to look for development opportunities from this crisis, to highlight the irreplaceable position of the discipline in the global fight against pandemics and to contribute to the health and prosperity of communities, to serve humankind better. In order to reach this goal while taking into account the specificity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the uncertainty of its environmental effects, it is believed that more emphasis should be placed on the following research directions: pathogen-soil interactions;isolation and remediation technologies for pathogen-contaminated sites;new materials for pathogen-contaminated soil;recycling and safe disposal of medical wastes;quantification of uncertainty in geoenvironmental and epidemiological problems;emerging technologies and adaptation strategies in civil, geotechnical and geoenvironmental infrastructures;pandemic-induced environmental risk management;and modelling of pathogen transport and fate in geoenvironment, among others. Moreover, Covid-19 has made it clear to the environmental geotechnics community the importance of urgent international co-operation and of multidisciplinary research actions that must extend to a broad range of scientific fields, including medical and public health disciplines, in order to meet the complexities posed by the Covid-19 pandemic. © 2021 ICE Publishing: All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL